If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = a2 + -3a + 4 Reorder the terms: 0 = 4 + -3a + a2 Solving 0 = 4 + -3a + a2 Solving for variable 'a'. Combine like terms: 0 + -4 = -4 -4 + 3a + -1a2 = 4 + -3a + a2 + -4 + 3a + -1a2 Reorder the terms: -4 + 3a + -1a2 = 4 + -4 + -3a + 3a + a2 + -1a2 Combine like terms: 4 + -4 = 0 -4 + 3a + -1a2 = 0 + -3a + 3a + a2 + -1a2 -4 + 3a + -1a2 = -3a + 3a + a2 + -1a2 Combine like terms: -3a + 3a = 0 -4 + 3a + -1a2 = 0 + a2 + -1a2 -4 + 3a + -1a2 = a2 + -1a2 Combine like terms: a2 + -1a2 = 0 -4 + 3a + -1a2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. 4 + -3a + a2 = 0 Move the constant term to the right: Add '-4' to each side of the equation. 4 + -3a + -4 + a2 = 0 + -4 Reorder the terms: 4 + -4 + -3a + a2 = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -3a + a2 = 0 + -4 -3a + a2 = 0 + -4 Combine like terms: 0 + -4 = -4 -3a + a2 = -4 The a term is -3a. Take half its coefficient (-1.5). Square it (2.25) and add it to both sides. Add '2.25' to each side of the equation. -3a + 2.25 + a2 = -4 + 2.25 Reorder the terms: 2.25 + -3a + a2 = -4 + 2.25 Combine like terms: -4 + 2.25 = -1.75 2.25 + -3a + a2 = -1.75 Factor a perfect square on the left side: (a + -1.5)(a + -1.5) = -1.75 Can't calculate square root of the right side. The solution to this equation could not be determined.
| ((A^-2)/2bc^-3))^-2 | | 7(3x+12)-6=(-90) | | 9m-4m-8=53 | | -7(-5x-1)-9=243 | | log(5)(6x-1)=4 | | -8(3x+7)-6=(-86) | | 6-7n/2n=7 | | -10(2x+3)+6=96 | | -5(x-5)+1=26 | | 17-1/5 | | 2(x+2)+3=8 | | 8(8x+12)-9=(-233) | | 9z^2+6z=8 | | 8d+40=12d-8 | | 6(-8x+3)+3=(-411) | | 5-2x=33 | | 8(-7x+4)+2=146 | | h=-t^10+3t | | (7x+12)-9=(-60) | | 3/4(7/4) | | 123x+14124124=124 | | 5x+7-8(x+1)=4x+2 | | -3(x-2)=-4x-5 | | 180=(24-2x)(16-2x) | | 17-13=x/-8 | | (3x^3/5y^2)/(12x/15y) | | (3x^3.net/5y^2)/(12x/15y) | | -(7x-9)-11=(-107) | | 10(-3v-3)=16v-64 | | 3x+2+x=7 | | 8=9-6y | | 4(-5x-1)-8=68 |